

Cascaded Membrane Processes for Post-Combustion CO₂ Capture

Li Zhao, Ernst Riensche, Michael Weber, Detlef Stolten

5. Juli 2011 | IEK-3, Forschungszentrum Jülich, Germany

Frankfurt am Main

20-22. June, 2011

Outline

- 1. Why CO_2/N_2 gas separation membrane for post-combustion ?
- 2. Why not a single-stage membrane?
- 3. Membrane cascade concepts
- 4. Water removal
- 5. Pressure losses in membrane modules
- 6. Concluding remarks

How a Single-stage Membrane Works?

Driving Force

CO₂ partial pressure difference

Why not a Single-stage Membrane?

600 MW North Rhine-Westphalia (NRW) reference power plant of 45.9% net efficiency Ideal flue gas: 14 mol% CO_2 , 86 mol% N_2 Membrane CO_2 permance: 3 Nm³/m²hbar

Permeate	Degree of CO ₂	CO ₂ purity	CO ₂ /N ₂	Δη
vacuum [mbar]	separation [%]	[mol%]	permselectivity	[%-Ponints]
30	50	95	200	-3,4
100	50	95	3750	-2,8
100	70	95	No solution	-
	90	95	No solution	-

Optimization of a Membrane Cascade

R. Pathare, R. Agrawal, J. Membr. Sci. 364 (2010) 263-277

3 e₂s₁

3-stage

3 e₃s₀

Li Zhao Institut für Energie- und Klimaforschung – Brennstoffzellen (IEK-3)

Permeate

Permeate

Retentate

Criteria for the Evaluation

Cascade Concepts

Cascade A

Cascade B

Membrane CO₂ permeance: 3 Nm³/m²hbar; CO₂/N₂ selectivity: 50 (HZG)

Li Zhao Institut für Energie- und Klimaforschung – Brennstoffzellen (IEK-3)

Simulation Results

600 MW North Rhine-Westphalia (NRW) reference power plant of 45.9% net efficiency Ideal flue gas: 14 mol% CO_2 , 86 mol% N_2

Membrane CO₂ permance: 3 Nm³/m²hbar , CO₂/N₂ selectivity: 50 (HZG, Germany)

Short Summary for ideal flue gas

- For 50% and 70% degree of CO₂ separation cascade A (w/o feed flue gas compression) has energetic advantage against MEA absorption;
- For 90% degree of CO₂ separation cascade A has a slight energetic disadvantage, while cascade B (feed flue gas compression) is on the MEA absorption level.
- For all separation degrees cascade A needs much more membrane area than cascade B.

Water Removal

Ideal flue gas

CO ₂	14 mol%
N ₂	86 mol%

Real flue gas *

CO ₂	13.5 mol%
N ₂	70.1 mol%
0 ₂	3.7 mol%
H ₂ O	11.9 mol%
Ar	0.8 mol%
SOx	200 mg/Nm ³
NO _x	200 mg/Nm ³

^t Hard coal combustion, 50°C after FGD Purity requirements for pipeline

- CO₂ > 95 mol%
- No free water, < 500 ppm
- Limited non-condensable gas (N₂, Ar, H₂, NO_x and CH₄), < 4 mol%
- Limited contaminants (SO₂, H₂S, O₂)

[Hagdoorn 2007]

For post-combustion using membrane capture method, water removal is the other important topic in addition to CO_2 separation.

Measures for Dewatering (Cascade A)

Dewatering procedures:

- Using dehydration membrane prior to CO₂ separation
- Combing with inter- and aftercooling for each compression stage
- Remaining water removed by desiccant

Li Zhao Institut für Energie- und Klimaforschung – Brennstoffzellen (IEK-3)

Dehydration Membranes

Schematic illustration

K. Nijmeijer, 10th Jülicher Werkstoffsyposium, 2007

Case Studies

600 MW North Rhine-Westphalia (NRW) reference power plant of 45.9% net efficiency

The energy consumption for driving the water pump and for the regeneration of the desiccant medium are neglected.

Membrane CO₂ permance: 3 Nm³/m²hbar

Quasi real flue gas *

CO ₂	13.5 mol%
N ₂	70.1 mol%
0 ₂	3.7 mol%
H ₂ O	11.9 mol%
Ar	0.8 mol%

 Hard coal combustion, 50°C after FGD

Selectivity

CO ₂ /N ₂	50
N ₂ /N ₂	1
O ₂ /N ₂	2
H ₂ O/N ₂	10 ⁵
Ar/N ₂	2

Simulation Results

Cascade A, 70% degree of CO_2 separation

Water	Separation	Membrane		Specific	Specific	Efficiency
removal prior	degree	area		energy	energy for	loss
to CO ₂		[10 ⁶ m ²]		for capture	compression	[%-pts]
separation		1 st	2 nd	[kWh _e /t _{CO2}]	[kWh _e /t _{CO2}]	
1/3	78	2.39	0.06	198	110	8.4
2/3	78	2.39	0.06	181	110	7.9
ideal flue gas	70	2.39	0.06	151	105	6.4

More water in flue gas, more energy consumption for CO₂ separtion.

Gas compositions

Position	Cases of	p [bar]	Flow rate of	CO ₂	N ₂	O ₂	Ar	H ₂ O
	CO ₂		total stream	[mol%]	[mol%]	[mol%]	[mol%]	[mol%]
	removal		[kmol/h]					
Flue gas		1.05	70499	13.5	70.1	3.7	0.8	11.9
1	1/3	1.05	68147	14.0	72.70	3.83	0.82	8.64
	2/3	1.05	65624	14.54	75.49	3.98	0.86	5.13
2	1/3	1	8364	90.06	3.57	0.71	0.04	5.63
	2/3	1	8293	89.99	3.61	0.72	0.04	5.64
3	1/3	110	7897	95.38	3.78	0.75	0.04	500 ppm
	2/3	110	7830	95.32	3.82	0.76	0.04	500 ppm

Short Summary for quasi real flue gas

- Water removal is an important procedure of membrane separation process for post-combustion capture.
- Water in flue gas increases energy demand for post-combustion CO₂ capture using gas separation membranes.
- Water content in the flue gas shows a positive sweep gas effect for CO₂ separation membrane.

Pressure Losses in Membrane Modules

Envelope Module [Beeskow 2007].

Spiral-Wound Module [NETL-2]

Source:

http://www.netl.doe.gov/publications/proceedings/10/co2capt ure/presentations/thursday/Tim%20Merkel%20-%20Membrane%20Technology%20and%20Research%20Inc.pdf

	Δр	Δр	Compensation of Ap	Spec. energy	Δη
	Feed	Permeate		demand kWh _e /t _{CO2-sep}	%-points
Case 1	50 mbar		Blower 1.05-1.10 bar	10.5	-0.26
Case 2		50 mbar	Vacuum pump 50-100 mbar	31.5	-0.79

The extra energy demand shows how it is important to avoid pressure loss in membrane module design.

Concluding remarks

- For ideal flue gas
 - For 50% and 70% degree of CO₂ separation the cascade without feed flue gas compression has energetic energy advantage against MEA absorption;
 - For 90% degree of CO₂ separation the cascade with feed flue compression is on the MEA absorption level of the specific energy.
 - For all separation degrees the cascade without feed flue gas compression needs much more membrane area.
- Water in flue gas increases the energy demand, but sweep effect allows to reach a higher degree of CO₂-separation. Detailed investigations are needed.
- **Pressure losses** on the feed side as well as on the permeate side must be taken into account for **membrane module design**.

Thank you for your attention!

