Corrosion Aspects of Materials Selection for CO2 Transport and Storage

Dirk Bettge, A.S. Ruhl, R. Bäßler, O. Yevtushenko, A. Kranzmann

Federal Institute for Materials Research and Testing

Berlin, Germany

Also with the BAM COORAL-Team:
T. Bohlmann, S. Bohraus, A. Göbel, P. Wichmann, E. Hoffmann
Contents

- COORAL Joint Research Project
- Materials and Gas Selection
- Experiments under CO\(_2\) stream
- EC Experiments under Aquifer and CO\(_2\)
- Conclusions
- Outlook
COORAL Main Goals

- COORAL: CO$_2$ Purity for Sequestration and Storing
 (CO$_2$-Reinheit für Abscheidung und Lagerung)
- Funding by
 - German Ministry of Economics (50 %)
 - E.ON, Vattenfall, ENBW, VNG, Alstom (50 %)
- Scheduled term 42 months, start date 01.04.2009
- Objectives:
 - Limits of impurities
 - Developing phases in the CO$_2$ stream
 - Corrosion of compressor and tube materials
 - Geochemical reactions
 - Safety issues
 - Cost effectiveness
CCS Transport Chain

- BAM Fields of Interest:
 - Compression
 - Transport
 - Injection
Materials Selection

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Short Sign</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4006</td>
<td>X12Cr13</td>
<td>KM</td>
<td></td>
</tr>
<tr>
<td>1.4313</td>
<td>X3CrNiMo13-4</td>
<td>KR</td>
<td>QT650</td>
</tr>
<tr>
<td>1.4542</td>
<td>X5CrNiCuNb16-4</td>
<td>KS</td>
<td>P930</td>
</tr>
<tr>
<td>1.4562</td>
<td>X1NiCrMoCu32-28-7</td>
<td>KU</td>
<td></td>
</tr>
<tr>
<td>3.7165</td>
<td>Ti-Al6-V4</td>
<td>KX</td>
<td></td>
</tr>
<tr>
<td>1.1018</td>
<td>Soft Iron</td>
<td>TA</td>
<td></td>
</tr>
<tr>
<td>1.0484</td>
<td>L290NB</td>
<td>TB</td>
<td></td>
</tr>
<tr>
<td>1.0582</td>
<td>L360NB</td>
<td>TC</td>
<td></td>
</tr>
<tr>
<td>1.8977</td>
<td>L485MB</td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>1.7225</td>
<td>42CrMo4</td>
<td>IH</td>
<td></td>
</tr>
<tr>
<td>1.4021</td>
<td>X20Cr13</td>
<td>IN</td>
<td></td>
</tr>
<tr>
<td>1.4034</td>
<td>X46Cr13</td>
<td>IO</td>
<td></td>
</tr>
<tr>
<td>1.4542</td>
<td>X5CrNiCuNb16-4</td>
<td>IS</td>
<td>P930</td>
</tr>
<tr>
<td>1.4162</td>
<td>X2CrMnNiN22-5-2</td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>1.4562</td>
<td>X1NiCrMoCu32-28-7</td>
<td>IU</td>
<td></td>
</tr>
</tbody>
</table>

- **Compression**: $T = 170 \, ^\circ C$
- **Transport**: $T = 5 \, ^\circ C$
- **Injection**: $T = 60 \, ^\circ C$
Gas Selection

Estimated CO2 stream compositions

Oxyfuel

<table>
<thead>
<tr>
<th></th>
<th>CO2</th>
<th>O2</th>
<th>N2</th>
<th>Ar</th>
<th>NOx</th>
<th>SOx</th>
<th>H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>99.95%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>50 ppm</td>
<td>50 ppm</td>
<td>0.01%</td>
</tr>
<tr>
<td>+</td>
<td>98.00%</td>
<td>0.67%</td>
<td>0.71%</td>
<td>0.59%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>-</td>
<td>96.00%</td>
<td>1.34%</td>
<td>1.38%</td>
<td>1.25%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>--</td>
<td>85.00%</td>
<td>4.70%</td>
<td>5.80%</td>
<td>4.57%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

Post-Combustion

<table>
<thead>
<tr>
<th></th>
<th>CO2</th>
<th>O2</th>
<th>N2</th>
<th>NOx</th>
<th>SOx</th>
<th>H2O</th>
<th>Amin</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>99.80%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
</tr>
<tr>
<td>-</td>
<td>99.40%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

A. Kather, TUHH

So called „Worst Case Composition“ to start with:

\[
\text{CO}_2 - 2\% \ O_2 - 750 \ \text{ppm} \ \text{CO} - 600 \ \text{ppm} \ H_2O - 70 \ \text{ppm} \ SO_x - 100 \ NO_x
\]

Variation of amounts of the impurities to determine their influence
Gas Reactions (without intermediates)

- $\text{SO}_2 + 7 \text{H}_2\text{O} \Rightarrow \text{H}_2\text{SO}_4 (\text{H}_2\text{O})_6$; liquid sulphuric acid forms up to 120 °C
- $\text{CO} + \text{O}_2 \Rightarrow \text{CO}_2 + \frac{1}{2}\text{O}_2$; CO and O$_2$ are consumed
- $\text{NO}_2 + \text{CO} \Rightarrow \text{CO}_2 + \frac{1}{2}\text{N}_2 + \frac{1}{2}\text{O}_2$; N$_2$ is formed
- $\text{H}_2\text{O} + 2\text{NO}_2 \Rightarrow \text{HNO}_3 + \text{HNO}_2$, gaseous nitric acid and nitrous acid are formed to low amounts
- $\text{SO}_2 + \frac{1}{2}\text{O}_2 \Rightarrow \text{SO}_3$; is formed at > 60°C
Screening Experiments under Ambient Pressure

- 3 Chamber Furnaces
- Compression 170 °C
- Gas Mixing
- Transport 5 °C
- Data Akquisition
- Injection 60 °C
Screening Experiments

60 °C, 600 hours, 600 H₂O – 70 SO₂ – 100 NO₂ – 750 CO – 8000 O₂ (in ppm)
Screening Experiments

5 °C, 600 hours, 600 H₂O – 70 SO₂ – 100 NO₂ – 750 CO – 8.000 O₂

• Very slight uniform corrosion of pipeline materials
Phase Analysis Using XRD

- Amorphous or very fine grained layer
Screening Experiments

170 °C, 600 hours, 600 ppm H₂O – 70 ppm SO₂ – 100 ppm NO₂ – 750 ppm CO – 8,000 ppm O₂

Compressor materials

- Ti 1.4562
- X12Cr13 1.4313
- 1.4542
- Ti

Bettge/Bässler/Kranzmann

ICEPE 20.6.2011
Screening Experiments

170 °C, 600 hours, 600 ppm H₂O – 220 ppm SO₂ – 1.000 ppm NO₂ – 750 ppm CO – 8.000 ppm O₂

From here, the amount of impurities was increased beyond „worst case“
Screening Experiments

60°C, 240 hours, 8.000 ppm H₂O, 220 ppm SO₂, 1.000 ppm NO₂

Amount of H₂O was increased beyound “worst case”
Screening Experiments

30°C, 120 hours, 8,000 ppm H₂O, 220 ppm SO₂, 1,000 ppm NO₂
Screening Experiments

5°C, 8.000 ppm H₂O, 220 ppm SO₂, 1000 ppm NO₂

Acid condensation under extreme conditions
Screening Experiments

5°C, 8.000 ppm H$_2$O, 220 ppm SO$_2$, 1000 ppm NO$_2$

Acid condensation under extreme conditions
L290NB, Experiments over 120 h at 5°C
Thickness Measurement L290NB

5 °C, 2 % H$_2$O, 650 ppm SO$_2$

=> condensating acid

approx. 0.7 .. 1.0 mm loss/year
Conclusions Screening Experiments

Pipeline Steels under Ambient Pressure
• At temperatures of 60°C and higher no corrosion observed under the described conditions
• At 30°C corrosion only under very high H₂O content ≥ 8.000 ppm due to acid condensation
• At 5 °C corrosion only under high water content ≥ 2.000 ppm due to acid condensation

Injection and Compression
• „Compressor materials“ without corrosion
• High alloyed „injection materials“ without corrosion
• 42CrMo4 and X46Cr13 behave similar to pipeline steels
Electro Chemical Experiments on Injection Materials

Conditions:

• Wet CO$_2$ stream
• High temperature, high pressure
• Aquifer water ("brine") with high Cl$^-$ content
• Aquifer water can rise in the pipeline to the injection point during the downtime
Experimental

Chemical composition of the steels, %

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4162</td>
<td>0.04</td>
<td>21-22</td>
<td>0.1-0.8</td>
<td>4-6</td>
<td>0.03</td>
<td>1.3-1.7</td>
<td>1</td>
<td>0.04</td>
<td>0.1-0.8</td>
</tr>
<tr>
<td>1.4021</td>
<td>0.25</td>
<td>12-14</td>
<td>1.5</td>
<td>0.015</td>
<td>1</td>
<td>0.035</td>
<td>0.4</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>1.7225</td>
<td>0.45</td>
<td>0.9-1.2</td>
<td>0.15-0.3</td>
<td>0.6-0.9</td>
<td>0.035</td>
<td>0.4</td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulation of the “real conditions” in the lab:

- Artificial brine similar to onshore CCS-site in Germany
- Brine saturation with CO₂
- Continues CO₂ flow
- Temperature 60 °C known as critical for CO₂ corrosion
Experimental setup

Brine composition

<table>
<thead>
<tr>
<th>Cations</th>
<th>mg L⁻¹</th>
<th>Anions</th>
<th>mg L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²⁺</td>
<td>1760</td>
<td>Cl⁻</td>
<td>143300</td>
</tr>
<tr>
<td>K⁺</td>
<td>430</td>
<td>SO₄²⁻</td>
<td>3600</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>1270</td>
<td>HCO₃⁻</td>
<td>40</td>
</tr>
<tr>
<td>Na⁺</td>
<td>90100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T = 333 K
CO₂ flow 3-5 L/h
pH = 5.8-6.0
Theoretical background

CO₂ corrosion:

\[\text{H₂O} + \text{CO₂} + \text{Fe} = \text{FeCO₃} + \text{H₂} \]

\[\text{CO₂} + \text{H₂O} \leftrightarrow \text{H₂CO₃} \]

Anodic:

\[\text{Fe} \rightarrow \text{Fe}^{++} + 2\text{e}^- \]

Cathodic:

\[2\text{HCO}_3^- + 2\text{e}^- \rightarrow 2\text{CO}_3^{2-} + \text{H₂} \]

\[2\text{H}^+ + 2\text{e}^- \rightarrow \text{H₂} \]

Maurice V., Marcus P. in *Modern Aspects of Electrochemistry*, 2009
1.4021 (X20Cr13) in CO2 saturated saline brine

\[R_{\text{pol}} \, \text{k}\Omega \cdot \text{cm}^2 \]

\[t, \text{days} \]

\[E_{\text{Ag/AgCl}} \, \text{V} \]
1.4021 (X20Cr13) in CO2 saturated saline brine

-350 mV

-380 mV

-390 mV

-400 mV

Bettge/Bäßler/Kranzmann

ICEPE 20.6.2011

Folie 26
1.7225 (42CrMo4) in CO2 saturated saline brine

Corrosion rate 1.9 mm/a
1.7225 (42CrMo4) in CO2 saturated saline brine
1.4162 (X2CrMnNiN22-5-2) in CO2 saturated saline brine

Graph showing the change in R_{pol} $\Omega \cdot \text{cm}^2$ and $E_{\text{Ag/AgCl}}$ mV over time, days. The graph indicates no pitting corrosion.
1.4162 (X2CrMnNiN22-5-2) in CO2 saturated saline brine

-190 mV -170 mV E, $V_{Ag/AgCl}$ -160 mV -150 mV
Conclusions EC Experiments

- In CO₂ saturated saline brine material 1.4021 is not resistant to pitting corrosion, 1.7225 shows uniform corrosion, alloy 1.4162 is resistant to pitting corrosion

- Cl⁻ ions concentration controls the corrosion kinetics

Outlook

- Corrosion of piping steels in a circulating supercritical impure CO₂ environment
Outlook: High Pressure Tests

Laminary Flow
- Autoclaves with CO$_2$ circuit, max. 120 bar, max. 200 °C
- Installed, first experiments launched

Turbulent Flow
- Max. 200 bar, 200 °C, Turbulent gas stream, max. 10 m/s
- Mechanical stress (ball on ring)
- To be assembled