CO$_2$ Absorption Pilot Plant – Design, Commissioning, Operational Experience, and Applications

Agnes von Garnier, Dr. Andreas Orth and Tobias Stefan, Outotec GmbH
Dr. Volker Giesen and Raquel Fernández Rodiles, BASF SE

2nd International Conference on Energy Process Engineering
June 22, 2011
CO₂ scrubbing unit

CO₂ scrubbing

Gas cleaning

CFB pilot plant
Outline

- Objective: demonstration of Circofer® process
- Integration in Circulating Fluidized Bed (CFB) pilot plant
- Design aspects
- Commissioning and first operational experience
- Further plant applications
Options for iron and steelmaking

Electric steelmaking

- Scrap (+ pig iron)
- Fine ore
- Lump ore
- Coal
- Pelletizing plant
- Shaft furnace
- Electric arc furnace (EAF)
- Steel
- H₂

Oxygen steelmaking

- Conventional blast furnace
- Coal
- Lump ore
- Sinter/pelletizing plant
- Blast furnace
- Hot metal
- Oxygen converter (BOF)
- Steel
- Scrap
- 65%
- O₂

- Smelting reduction
- Fine ore and coal
- Air / O₂
- Coal
- Circofer® (1 stage)
- Hot DRI and char
- AusIron
- Slag
- Hot metal
- Steel
- Pig iron

Circored®
- Natural gas
- DRI/HBI
- 5%
- 30%

Circofer®
- H₂

ICEPE June 22, 2011 – CO₂ absorption pilot plant
Outotec’s direct reduction processes

Iron ore
- Lumps
- Fines

Reductant
- Coal
- Gas

Process
- SL/RN
- Circofer
- Circored

Product
Direct reduced iron (DRI)
Circofer process flowsheet

Coal & Iron ore

Coal crushing & drying

Pneumatic transport

Stage I

Preheating

Stage II

Heat generator

Steam boiler

Boiler feed water

Multiclone

Venturi scrubber

Steam to CO₂ scrubbing

CO₂ scrubbing

CO₂

Steam

Hot compaction

Air, O₂, coal

Offgas to waste heat recovery

Process gas compressor

Ausiron

Flash reactor

N₂

Process gas heater

Pig iron

Slag

Air

O₂ generator

Gas

Solids
700 mm CFB pilot plant
Integration in CFB pilot plant

Operation with H₂ as fluidization gas, open circuit
Integration in CFB pilot plant

Operation in closed circuit, fluidization with recycling gas

Pilot plant expansion 2009-2010

CO\textsubscript{2} absorption pilot plant

Compression

Scrubbing

Cooling

Pilot plant expansion 2009-2010

ICEPE June 22, 2011 – CO\textsubscript{2} absorption pilot plant
Gas preparation

- Compression to approx. 5 bar
 - 355 kW liquid ring compressor
 - No temperature increase
 - Decreasing dust load

- Gas cleaning and cooling
 - New high pressure scrubber (Outotec design)
 - Gas cooler
CO$_2$ absorption pilot plant

CO, H$_2$, N$_2$ < 1 % CO$_2$

5 bar

1.3 bar

CO$_2$ Absorber

Reflux Drum

Gas Condenser

Closed Circuit Cooling Water Supply

After Burning Chamber

Fresh aMDEA$^\text{TM}$ distilled H$_2$O

Reboiler

anti-foaming agent

from CFB Plant
to CFB Plant

ICEPE June 22, 2011 – CO$_2$ absorption pilot plant
CO₂ absorption pilot plant under construction
Commissioning

- During coal gasification test campaign
 - up to 750 Nm3/h tar and dust loaded gas
 - CO$_2$ removal efficiency > 80%
 - CO$_2$ content in incoming gas significantly higher than design
 - Filters successfully removed solids and tars

- During Circofer test campaign
 - < 0.5 % CO$_2$ in recycled gas
 - CO$_2$ removal efficiency > 95%
 - 100 Nm3/h scrubbed gas recycled to CFB via electrical gas heater
 - additional N$_2$ added for sufficient fluidization
Commissioning during Circofer campaign

Typical operational data

<table>
<thead>
<tr>
<th>gas</th>
<th>after liquid ring compressor</th>
<th>after CO₂ absorption unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>° C</td>
<td>50</td>
</tr>
<tr>
<td>pressure</td>
<td>kPag</td>
<td>450</td>
</tr>
<tr>
<td>volume flow</td>
<td>Nm³/h</td>
<td>400</td>
</tr>
<tr>
<td>gas composition (dry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>%-vol.</td>
<td>13.5</td>
</tr>
<tr>
<td>CO</td>
<td>%-vol.</td>
<td>12.1</td>
</tr>
<tr>
<td>H₂</td>
<td>%-vol.</td>
<td>12.2</td>
</tr>
<tr>
<td>CH₄</td>
<td>%-vol.</td>
<td>1.0</td>
</tr>
<tr>
<td>O₂</td>
<td>%-vol.</td>
<td>0.1</td>
</tr>
<tr>
<td>N₂</td>
<td>%-vol.</td>
<td>Balance</td>
</tr>
</tbody>
</table>
Commissioning during Circofer campaign

Typical transient behavior during start-up of CO₂ scrubbing plant

![Graph showing gas composition over time](image-url)
Conclusion and further plant capabilities

Features
- CO$_2$ and H$_2$S co-absorption
- Tars and dust load can be handled

Applications
- Cleaning of process gases from
 - Iron ore direct reduction
 - Coal and biomass gasification
- Development of Outotec‘s sustainable energy technologies
- Reduce carbon footprint
 - coal and biomass based energy production
 - oil winning from oil shale (Enefit process)
- Carbonate Looping, Oxyfuel

Removed gas to be used
- in other processes
- for underground storage (CCS)